Human spermatozoa glycerol permeability and activation energy determined by electron paramagnetic resonance.
نویسندگان
چکیده
The permeability of human spermatozoa to glycerol and its activation energy were determined using electron paramagnetic resonance (EPR) techniques. EPR was used to monitor the aqueous cell volume change vs. time during the glycerol permeation process using the aqueous spin label 15N-tempone and the membrane impermeable broadening agent potassium trioxalatochromiate (chromium oxalate). The permeation process was completed in tens of seconds, requiring the use of a stopped-flow methodology. The glycerol permeability coefficient (Pg) was determined by fitting a simple theoretical model to the experimental data. The permeabilities of human spermatozoa in 1 molar and 2 molar glycerol at 20 degrees C are (10.3 +/- 0.3).10(-4) cm/min (mean +/- S.D.) and (6.0 +/- 1.4).10(-4) cm/min, respectively. The permeabilities of human spermatozoa in 2 molar glycerol at 30, 20, 10, and 0 degrees C are (8.3 +/- 1.3).10(-4) cm/min, (6.0 +/- 1.4).10(-4) cm/min, (2.1 +/- 0.4).10(-4) cm/min, and (1.1 +/- 0.3).10(-4) cm/min, respectively. The activation energy (Ea) for glycerol permeation between 30 degrees C and 0 degrees C was found to be 11.6 kcal/mol.
منابع مشابه
Electron Paramagnetic Resonance Studies of the Effects of π-donor Ligand and B18N18 Nanoring Field on Energy Gaps
To investigation non-bonded interaction of the [CuF4]2- complex inside nanoring, we focus on the single wall boron-nitride B18N18 nanoring. Thus, the geometry of B18N18 nanoring has been optimized by B3LYP method with EPR-II basis set and geometry of the [CuF4]2- complex has been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. Also electronic ...
متن کاملElectron Paramagnetic Resonance Studies of the Effects of π-donor Ligand and B18N18 Nanoring Field on Energy Gaps
To investigation non-bonded interaction of the [CuF4]2- complex inside nanoring, we focus on the single wall boron-nitride B18N18 nanoring. Thus, the geometry of B18N18 nanoring has been optimized by B3LYP method with EPR-II basis set and geometry of the [CuF4]2- complex has been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. Also electronic ...
متن کاملDemystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules
Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...
متن کاملELECTRON PARAMAGNETIC RESONANCE (EPR) SPECTROSCOPY AND GEOCHEMISTRY IN TIN EXPLORATION AT RENISON, TASMANIA AUSTRALIA
Rock powder of dolomite samples from the Renison mine area of Tasmania, Australia were analyzed by electron paramagnentic resonance spectroscopy (EPR), Atomic Absorption and Mass Spectrometer to identify alteration related to mineralisation. The least-altered dolomite samples, which are not effected by circulation of diagenetic and hydrothermal fluids are characterised by low Mn and Fe and ...
متن کاملMAGNETISATION AND ELECTRON SPIN RESONANCE STUDIES OF TETRAHEDRAL AMORPHOUS CARBON
The magnetisation and electron spin resonance (ESR) spectrum of two specimens of tetrahedral amorphous carbon (ta-C), deposited from a filtered cathodic arc, were measured over a wide temperature range. The magnetisation was found to consist of superparamagnetic, paramagnetic and diamagnetic contributions. The superparamagnetic contribution resembled that recently found in carbon prepared from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1194 1 شماره
صفحات -
تاریخ انتشار 1994